Conceptual vs Logical vs Physical Architecture β€” Comparison

 

Conceptual vs Logical vs Physical Architecture β€” Comparison TableΒ 


📊 Core Comparison Table

Dimension Conceptual Architecture Logical Architecture Physical Architecture
Primary Purpose Define intent and meaning of the system Define structure and behavior of the system Define deployment and realization
Key Question Answered What & Why How (design) Where & With what
Level of Abstraction Very high Medium Low (concrete)
Technology Dependency None Technology-neutral Technology & vendor-specific
Focus Business capabilities & domain concepts Components, services, data flows Infrastructure, network, runtime
Audience Business stakeholders, product owners Solution architects, lead engineers DevOps, infra, operations
Stability Over Time Very stable Moderately stable Changes frequently
Typical Artifacts Capability maps, domain diagrams Component diagrams, API contracts Deployment diagrams, IaC
Contains Hardware Details ❌ No ❌ No ✅ Yes
Contains Software Components High-level only Detailed Mapped to infra
Performance / HA Details ❌ No Conceptual only ✅ Yes
Security Definition Policy intent Logical boundaries & roles Firewalls, IAM, NSGs
Cost Visibility ❌ No Approximate ✅ Accurate
Failure Impact Business-level Service-level Node / pod / VM-level

🧠 Same System β€” Viewed at 3 Levels

Layer Example Statement
Conceptual β€œCollect machine data and provide operational insights.”
Logical β€œPLC adapters publish events to a broker; analytics consumes streams.”
Physical β€œJetson β†’ MQTT β†’ Kafka on AKS β†’ Azure Data Explorer.”

Β Domain Mapping Table

Domain Conceptual Logical Physical
Software User stories, capabilities Microservices, APIs Containers, VMs
Database Business entities Tables & relations Storage engine, disks
Cloud Scalable platform Event-driven design Regions, clusters
IIoT Digital factory Asset twins, pipelines Edge gateways, GPUs
Security Zero-trust intent Auth flows, RBAC Firewalls, IAM rules

🔁 Change Impact Matrix

Change Type Conceptual Logical Physical
Switch cloud provider
Change data model
Add GPU acceleration
Change business goal

⚠️ Common Industry Errors (Quick Check)

Mistake Why It’s Wrong
Kafka in conceptual diagram Tech belongs to physical/logical
VM size in logical architecture Infra detail = physical
Skipping conceptual layer Leads to wrong system design

📝 One-Line Exam Definitions

  • Conceptual Architecture: Defines what the system is and why it exists.
  • Logical Architecture: Defines how the system is structured and behaves.
  • Physical Architecture: Defines where and with what the system is implemented.

Detailed Overview

Difference between Conceptual, Logical, and Physical Architecture

This is a core abstraction principle used everywhere: software design, databases, cloud, IoT, digital twins, PLM, enterprise architecture, and even ISA-95.

Think of it as three zoom levels of the same system.


1️⃣ Conceptual Architecture β€” The β€œWhat & Why”

🔹 What it is

  • High-level mental model
  • Describes what the system does, why it exists, and who uses it
  • No technology, no protocols, no servers

🔹 Key questions answered

  • What problem are we solving?
  • Who are the actors?
  • What are the major capabilities?
  • How do parts conceptually interact?

🔹 Characteristics

  • Technology-agnostic
  • Business / domain-focused
  • Stable over time
  • Communicates vision

🔹 Example (simple)

β€œWe need a system that collects machine data, analyzes performance, and shows insights to operators.”

🔹 Conceptual blocks

[ Machines ] β†’ [ Data Collection ] β†’ [ Analysis ] β†’ [ Insights ]

🔹 Used by

  • Architects
  • Product owners
  • Business stakeholders
  • Early design discussions

2️⃣ Logical Architecture β€” The β€œHow (Design)”

🔹 What it is

  • Structured design of components
  • Defines functions, services, data flows, and interfaces
  • Still independent of hardware or vendors

🔹 Key questions answered

  • How will the system work internally?
  • What components exist?
  • How do components communicate?
  • What data models are used?

🔹 Characteristics

  • Technology-neutral (but technical)
  • Shows dependencies & responsibilities
  • Blueprint for implementation

🔹 Example

[ PLC Adapter ] β†’ [ Message Broker ] β†’ [ Stream Processor ]
                                     ↓
                               [ Time-Series DB ]
                                     ↓
                               [ Analytics Engine ]
                                     ↓
                               [ Dashboard Service ]

🔹 What appears here

  • Microservices
  • APIs
  • Event flows
  • Data schemas
  • Security boundaries (logical)

🔹 Used by

  • Solution architects
  • System designers
  • Lead engineers

3️⃣ Physical Architecture β€” The β€œWhere & With What”

🔹 What it is

  • Concrete deployment model
  • Maps logical components to real infrastructure

🔹 Key questions answered

  • Where does it run?
  • Which servers, cloud services, networks?
  • How is it deployed and scaled?
  • How is high availability achieved?

🔹 Characteristics

  • Technology-specific
  • Vendor-specific
  • Environment-specific (edge, cloud, on-prem)
  • Changes more often

🔹 Example

Edge:
  Jetson Nano β†’ MQTT β†’ 5G

Cloud:
  AKS Cluster
    - Ingestion Pods
    - Kafka
    - Flink
    - ADX
    - Grafana

Storage:
  Azure Blob (Private Endpoint)

🔹 Includes

  • VM sizes
  • Kubernetes clusters
  • GPUs
  • Subnets
  • Firewalls
  • Regions & zones

🔹 Used by

  • DevOps
  • Infra teams
  • Cloud architects
  • Operations

🔁 Relationship Between the Three (Golden Rule)

Conceptual β†’ Logical β†’ Physical
   WHAT         HOW         WHERE
  • One conceptual architecture
  • Many logical designs
  • Multiple physical deployments

🧠 Very Important

🏠 Building a House

Layer Meaning
Conceptual β€œI want a house with 3 bedrooms and good ventilation”
Logical Floor plan, room layout, plumbing design
Physical Concrete, bricks, steel, electrical wiring

Changing paint color = physical
Changing room layout = logical
Changing purpose (home β†’ hospital) = conceptual


🧩 Example Across Domains

📦 Database

Layer Example
Conceptual Customer places orders
Logical Tables, relationships, keys
Physical MySQL on SSD, indexes, sharding

☁️ Cloud

Layer Example
Conceptual Scalable analytics platform
Logical Event-driven microservices
Physical AWS EKS / Azure AKS / GCP GKE

🏭 IIoT / Digital Twin (Your domain)

Layer Example
Conceptual Digital representation of factory
Logical Asset twins, telemetry, simulations
Physical Edge gateways, GPUs, cloud regions

⚠️ Common Mistakes (Very Common in Industry)

❌ Mixing layers

β€œKafka cluster is part of conceptual architecture”

❌ Jumping directly to physical

β€œWhich GPU should we buy?” before defining logic

❌ Over-engineering logical layer

Logical β‰  vendor diagram


🧪 Sequence View (Flow Across Layers)

[Business Goal]
      ↓
[Conceptual Model]
      ↓
[Logical Components & Data Flow]
      ↓
[Physical Deployment & Infra]
      ↓
[Runtime Operations]

📄 One-Page Cheat Sheet

Aspect Conceptual Logical Physical
Focus Meaning Design Deployment
Answers What / Why How Where
Technology None Neutral Specific
Audience Business Architects Ops
Stability Very high Medium Low
Examples Capabilities Services Servers

 

Mapping Conceptual / Logical / Physical Architecture to ISA-95 & Industry 4.0

Image

Image

Image

Image


🔷 ONE DIAGRAM β€” ALL LAYERS, ALL FLOWS

(Textual / ASCII version β€” blog-safe + redraw-ready)

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    BUSINESS & STRATEGY                      β”‚
β”‚  ERP | Finance | Supply Chain | Sales | Planning            β”‚
β”‚  (Orders, Cost, Forecast, KPIs)                             β”‚
β”‚  ──────────────── ISA-95 LEVEL 4 ────────────────          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–²β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                β”‚                               β”‚
                β”‚ Business Context              β”‚
                β”‚                               β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              MANUFACTURING OPERATIONS                       β”‚
β”‚  MES | MOM | Quality | Maintenance | Scheduling             β”‚
β”‚  (Work Orders, Production Rules, Recipes)                   β”‚
β”‚  ──────────────── ISA-95 LEVEL 3 ────────────────          β”‚
β”‚                                                             β”‚
β”‚   β—‰ Digital Twin (Process + Asset + KPI Twin)               β”‚
β”‚   β—‰ Contextualization & State Management                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–²β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                β”‚                               β”‚
                β”‚ Operational Commands           β”‚
                β”‚                               β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚               CONTROL & SUPERVISION                          β”‚
β”‚  SCADA | HMI | Batch Control | Line Control                  β”‚
β”‚  (Setpoints, Alarms, Supervisory Logic)                      β”‚
β”‚  ──────────────── ISA-95 LEVEL 2 ────────────────          β”‚
β”‚                                                             β”‚
β”‚   β—‰ Real-time Operational Twin                               β”‚
β”‚   β—‰ Event & Alarm Intelligence                               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–²β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                β”‚                               β”‚
                β”‚ Signals / Telemetry            β”‚
                β”‚                               β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              SENSING & ACTUATION                             β”‚
β”‚  PLC | CNC | Robots | Drives | Sensors                       β”‚
β”‚  (Temperature, Speed, Pressure, Vibration)                  β”‚
β”‚  ──────────────── ISA-95 LEVEL 1 / 0 ────────────────      β”‚
β”‚                                                             β”‚
β”‚   β—‰ Physical Asset Twin                                      β”‚
β”‚   β—‰ Edge Intelligence                                        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

══════════════════════════════════════════════════════════════
CROSS-CUTTING (VERTICAL) CAPABILITIES
══════════════════════════════════════════════════════════════
β€’ IoT Platform (MQTT, OPC UA, Kafka, Event Streaming)
β€’ Data Pipeline & Historian
β€’ AI / ML (Predictive, Prescriptive, Optimization)
β€’ PLM (Product, Recipe, Process Models)
β€’ Security, Governance, Identity
β€’ Cloud / Edge / Hybrid Deployment

 

 

 

 

 

1️⃣ Big Picture: How They Intersect

        Abstraction (WHY β†’ HOW β†’ WHERE)
        ──────────────────────────────▶

ISA-95 L4  ┆ Conceptual ┆ Logical ┆ Physical
ISA-95 L3  ┆ Conceptual ┆ Logical ┆ Physical
ISA-95 L2  ┆ Conceptual ┆ Logical ┆ Physical
ISA-95 L1  ┆ Conceptual ┆ Logical ┆ Physical
ISA-95 L0  ┆ Conceptual ┆ Logical ┆ Physical

Key insight:
ISA-95 defines WHAT level of operations,
Architecture layers define HOW deeply you describe it.


2️⃣ Core Mapping Table (Most Important)

🔹 Conceptual vs Logical vs Physical Γ— ISA-95

ISA-95 Level Conceptual Architecture (WHAT / WHY) Logical Architecture (HOW – design) Physical Architecture (WHERE – deployment)
Level 4 – Business Planning Demand planning, ERP intent, supply chain goals Order mgmt services, planning workflows SAP S/4HANA, Oracle ERP Cloud
Level 3 – Manufacturing Ops (MES) Production execution, quality, maintenance concepts MES modules, workflows, APIs MES servers, AKS/EKS clusters
Level 2 – Supervisory Control Monitoring & coordination intent SCADA services, alarm mgmt logic SCADA servers, HMIs
Level 1 – Control Control strategies PLC programs, control logic PLC hardware, RTUs
Level 0 – Process Physical process intent Sensor models, actuation logic Sensors, motors, robots

3️⃣ Industry 4.0 View (Digital Thread)

Industry 4.0 introduces:

  • Cyber-Physical Systems (CPS)
  • Digital Twins
  • AI/ML
  • Edge + Cloud continuum

Mapping Table

Industry 4.0 Concept Conceptual Logical Physical
Digital Twin Virtual representation of assets Twin models, telemetry bindings ADT / Twin platform, GPUs
IIoT Platform Unified data backbone Ingestion, streaming, storage Edge gateways, cloud services
AI / Analytics Predictive & prescriptive goals Feature pipelines, ML services GPUs, ML runtimes
Interoperability Vendor-neutral vision OPC UA, MQTT schemas Brokers, endpoints
Automation Autonomous factory Closed-loop logic Robots, PLCs

4️⃣ Example: One Use Case Across All Layers

Use case: Predictive Maintenance

Conceptual (ISA-95 L3/L4)

β€œPrevent unplanned downtime and optimize maintenance schedules.”

Logical

Sensors β†’ Stream Processor β†’ Feature Store
            ↓
       ML Inference Service
            ↓
     Maintenance Work Orders

Physical

Level 0–1: Vibration sensors, PLCs
Level 2: SCADA + OPC UA
Level 3: AKS + Kafka + ML
Level 4: ERP integration

5️⃣ Why This Mapping Matters (Real Industry Pain)

❌ Common mistake

Putting Kafka, GPUs, AKS directly into ISA-95 diagrams

✅ Correct approach

  • ISA-95 = Operational responsibility
  • Conceptual/Logical/Physical = Design discipline

6️⃣ Architecture Decision Flow (Sequence View)

Business Goal
   ↓
ISA-95 Level Identification
   ↓
Conceptual Definition (WHAT)
   ↓
Logical Design (HOW)
   ↓
Physical Deployment (WHERE)

7️⃣ Exam + Interview One-Liners

  • ISA-95 answers β€œWhich operational layer?”
  • Conceptual architecture answers β€œWhat capability?”
  • Logical architecture answers β€œHow is it designed?”
  • Physical architecture answers β€œWhere is it deployed?”

8️⃣ One-Page Cheat Sheet

Axis Purpose
ISA-95 Functional responsibility
Conceptual Business meaning
Logical System design
Physical Infrastructure reality

Bottom Line (Architect-level clarity)

ISA-95 defines the factory hierarchy.
Conceptual, Logical, and Physical architectures define how clearly and correctly you design each level.

Overlaying Digital Twin + PLM on ISA-95 using Conceptual / Logical / Physical Architecture

 


1️⃣ Mental Model (Very Important)

PLM  ──▶  Digital Twin  ──▶  MES / SCADA / PLC
 β–²                                 β”‚
 └────────────── Feedback ◀β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  • PLM = Design truth
  • Digital Twin = Living system model
  • ISA-95 = Operational execution

Architecture layers control clarity, ISA-95 controls responsibility.


2️⃣ Master Overlay Table (Core Answer)

Digital Twin + PLM Γ— ISA-95 Γ— Architecture Layers

ISA-95 Level Conceptual (WHAT / WHY) Logical (HOW – design) Physical (WHERE – deployed)
L4 – Business / PLM / ERP Product intent, BOM, lifecycle, compliance PLM services, product structures, change mgmt workflows PLM system, ERP system
L3 – Manufacturing Ops (MES) How product is built & maintained Process plans, routings, work instructions MES apps, orchestration clusters
L2 – Supervisory (SCADA) Operational visibility State models, alarms, KPIs SCADA servers, HMIs
L1 – Control Control strategies PLC logic, recipes PLCs, controllers
L0 – Physical Process Physical behavior Physics & constraints Machines, sensors, robots

3️⃣ Where PLM Lives vs Digital Twin

Clear separation (often misunderstood)

Capability PLM Digital Twin
Product definition ✅ Primary
As-designed BOM
As-built / As-operated
Real-time telemetry
Physics simulation Partial
Closed-loop feedback

Key rule

PLM is static truth, Digital Twin is dynamic truth.


4️⃣ Digital Twin Overlay by Architecture Layer

🔹 Conceptual Layer

  • β€œA virtual representation of assets and processes across lifecycle”
  • Supports:
    • Design β†’ Manufacture β†’ Operate β†’ Maintain

Conceptual Digital Thread

PLM β†’ Manufacturing β†’ Operations β†’ Feedback β†’ PLM

🔹 Logical Layer (This is where architects work)

PLM (BOM, CAD, Specs)
        ↓
Asset Model / Twin Model
        ↓
Telemetry + State + Events
        ↓
Analytics / Physics / AI
        ↓
Insights β†’ MES / ERP / PLM

Logical constructs:

  • Asset hierarchy
  • Twin types
  • Relationships (part-of, connected-to)
  • State machines
  • Simulation bindings

🔹 Physical Layer (Execution reality)

Edge:
  Sensors, PLCs, Robots

Platform:
  Twin runtime
  Stream processing
  Simulation engines
  ML inference

Enterprise:
  PLM system
  MES system
  ERP system

5️⃣ Mapping to Industry 4.0 Pillars

Industry 4.0 Pillar PLM Role Digital Twin Role
Interoperability Product standards Live system integration
Information transparency As-designed data Real-time truth
Technical assistance Documentation Predictive insights
Decentralized decisions Autonomous decisions

6️⃣ Example Walkthrough (Predictive Maintenance)

Step-by-step across layers

Conceptual

β€œReduce downtime by predicting failures.”

Logical

PLM: Design limits
DT: Real-time vibration + thermal
AI: Degradation model
MES: Maintenance scheduling

Physical

Sensors β†’ Edge Gateway β†’ Twin Platform β†’ MES β†’ ERP

Feedback loop:

Failure pattern β†’ PLM design improvement

7️⃣ Common Industry Mistakes (Reality Check)

❌ Treating PLM as a Digital Twin
❌ Storing live telemetry inside PLM
❌ Skipping logical modeling and jumping to tools
❌ Mixing ISA-95 levels with architecture layers

✅ Correct view:

  • ISA-95 = where responsibility sits
  • Architecture layers = how clearly you design
  • PLM + Digital Twin = digital continuity

8️⃣ One-Page Cheat Sheet (Exam + Interview)

Term Meaning
PLM Lifecycle design authority
Digital Twin Live operational mirror
ISA-95 Operational hierarchy
Conceptual Business & lifecycle intent
Logical Models, flows, relationships
Physical Systems, hardware, infra

Bottom Line (Architect-level statement)

PLM defines what should exist,
Digital Twin shows what actually exists,
ISA-95 defines where it operates,
and Conceptual–Logical–Physical architecture ensures it is designed correctly.

Closed-Loop Control with Physics-Based AI

(Digital Twin + PLM + ISA-95 + Conceptual β†’ Logical β†’ Physical)

 

 

Image

 


🧠 HOW TO READ THIS DIAGRAM

  • Vertical axis β†’ ISA-95 levels (L0–L4)
  • Horizontal flow β†’ Closed-loop control
  • Three lenses overlaid:
    • Conceptual = WHY / WHAT
    • Logical = HOW (models, flows)
    • Physical = WHERE (deployment)

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                           L4 – PLM / ERP (Business)                           β”‚
β”‚                                                                             β”‚
β”‚  CONCEPTUAL: Product intent, limits, lifecycle                              β”‚
β”‚  LOGICAL:   Design models, BOM, change mgmt                                 β”‚
β”‚  PHYSICAL:  PLM / ERP systems                                               β”‚
β”‚                                                                             β”‚
β”‚              ▲────────────── Learning / Feedback ────────────────┐         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               β”‚                                                    β”‚
               β”‚                                                    β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                           L3 – MES / Operations                     β”‚
β”‚                                                                             β”‚
β”‚  CONCEPTUAL: Optimize production, maintenance, energy                        β”‚
β”‚  LOGICAL:   Workflows, optimization goals, constraints                       β”‚
β”‚  PHYSICAL:  MES services, orchestration platforms                            β”‚
β”‚                                                                             β”‚
β”‚              β”‚        Optimization Targets / Policies                        β”‚
β”‚              β–Ό                                                              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               β”‚                                                    β”‚
               β”‚                                                    β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     DIGITAL TWIN + PHYSICS-AI CORE (L2–L3)          β”‚
β”‚                                                                             β”‚
β”‚  CONCEPTUAL: Living virtual representation                                   β”‚
β”‚                                                                             β”‚
β”‚  LOGICAL:                                                                  β”‚
β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                β”‚
β”‚    β”‚ Twin State  β”‚ β†’  β”‚ Physics     β”‚ β†’  β”‚ AI Residual β”‚                β”‚
β”‚    β”‚ Estimation  β”‚    β”‚ Model       β”‚    β”‚ / ML Model  β”‚                β”‚
β”‚    β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜                β”‚
β”‚           β”‚                  β”‚                  β”‚                        β”‚
β”‚           └─────────────── Combined Prediction β”€β”€β”˜                        β”‚
β”‚                                  β”‚                                        β”‚
β”‚                                  β–Ό                                        β”‚
β”‚                         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                               β”‚
β”‚                         β”‚ Controller       β”‚                               β”‚
β”‚                         β”‚ (MPC / Hybrid)   β”‚                               β”‚
β”‚                         β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                               β”‚
β”‚                                                                             β”‚
β”‚  PHYSICAL: Edge server / GPU / real-time runtime                             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               β”‚                                                    β”‚
               β”‚ Control Commands                                   β”‚
               β–Ό                                                    β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                           L1 – Control                              β”‚
β”‚                                                                             β”‚
β”‚  CONCEPTUAL: Safe & stable control                                           β”‚
β”‚  LOGICAL:   Control logic, recipes                                           β”‚
β”‚  PHYSICAL:  PLCs / Controllers                                               β”‚
β”‚                                                                             β”‚
β”‚              β”‚ Actuation                                                     β”‚
β”‚              β–Ό                                                              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               β”‚                                                    β”‚
               β”‚                                                    β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                           L0 – Physical Process                     β”‚
β”‚                                                                             β”‚
β”‚  CONCEPTUAL: Real-world physics                                              β”‚
β”‚  LOGICAL:   State variables                                                  β”‚
β”‚  PHYSICAL:  Machines, sensors, robots                                       β”‚
β”‚                                                                             β”‚
β”‚              β”‚ Telemetry                                                     β”‚
β”‚              └───────────────▶β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🔑 WHAT THIS SUPER-DIAGRAM CAPTURES (WHY IT’S POWERFUL)

✔ Closed-Loop Control

  • Sensors β†’ Twin β†’ Physics β†’ AI β†’ Controller β†’ Actuators β†’ Sensors

✔ Physics-Based AI

  • Physics model = governing laws
  • AI model = residual / uncertainty correction
  • Controller = safe decision making

✔ Digital Thread

  • PLM (as-designed)
  • Digital Twin (as-operated)
  • Feedback to PLM (as-learned)

✔ ISA-95 Alignment

  • Fast loops: L0–L2 (edge)
  • Optimization: L3
  • Learning & redesign: L4

🧪Β  ONE-LINER

This diagram shows how physics-based AI enables safe closed-loop control by embedding digital twins between ISA-95 operational layers, while maintaining architectural separation across conceptual, logical, and physical views.


 

Definitions & Comparisons

  1. Conceptual, Logical, Physical Data Models β€” ThoughtSpot
    Explains high-level meaning, structure, and implementation levels of data models. Conceptual vs Logical vs Physical Data Models (ThoughtSpot)

  2. Logical vs Physical Architecture (general IT comparison)
    Defines logical vs physical with purpose and differences. Logical Architecture vs Physical Architecture (Simplicable)

  3. Conceptual, Logical, Physical Data Modeling β€” SQLDBM
    Short clear summary of all three model types in data design. Conceptual, Logical, Physical Data Modeling (SQLDBM)

  4. Logical vs Physical Architecture β€” .NET Architecture Guide (Microsoft)
    Describes logical architecture components and how they relate to physical deployment. Logical vs Physical Architecture (Microsoft)

  5. Data Models Explanation β€” Couchbase
    Good breakdown of how conceptual β†’ logical β†’ physical models build on each other. Data Modeling Explained (Couchbase)

↪️ Additional Context or Framework Support

  1. Integrated Architecture Framework (IAF)
    Enterprise architecture framework that uses conceptual, logical, and physical viewpoints. Integrated Architecture Framework (Wikipedia)

  2. Enterprise Architecture Overview (Wikipedia)
    General EA context where multiple abstraction layers are organized logically/physically. Enterprise Architecture (Wikipedia)

  3. Data Architecture Description (Wikipedia)
    Shows how conceptual/logical/physical stages appear in data architecture modeling. Data Architecture (Wikipedia)

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *